3 research outputs found

    A second-generation high speed civil transport: Stingray

    Get PDF
    The Stingray is the second-generation High Speed Civil Transport (HSCT) designed for the 21st Century. This aircraft is designed to be economically viable and environmentally sound transportation competitive in markets currently dominated by subsonic aircraft such as the Boeing 747 and upcoming McDonnell Douglas MD-12. With the Stringray coming into service in 2005, a ticket price of 21 percent over current subsonic airlines will cover operational costs with a 10 percent return on investment. The cost per aircraft will be 202millionwiththeDirectOperatingCostequalto202 million with the Direct Operating Cost equal to 0.072 per mile per seat. This aircraft has been designed to be a realistic aircraft that can be built within the next ten to fifteen years. There was only one main technological improvement factor used in the design, that being for the engine specific fuel consumption. The Stingray, therefore, does not rely on technology that does not exist. The Stingray will be powered by four mixed flow turbofans that meet both nitrous oxide emissions and FAR 36 Stage 3 noise regulations. It will carry 250 passengers a distance of 5200 nautical miles at a speed of Mach 2.4. The shape of the Stingray, while optimized for supersonic flight, is compatible with all current airline facilities in airports around the world. As the demand for economical, high-speed flight increases, the Stingray will be ready and able to meet those demands

    Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments

    No full text
    During subduction, weak, unlithified sediments are scraped off the down-going plate and accumulate near the subduction trench axis. The weak nature of the sediments usually impedes the propagation of fault rupture during an earthquake. However, measurements of slip during the 2004 Sumatra–Andaman Mw 9.2 earthquake show that fault rupture propagatedupdip, extending unusually close to the subduction trench, in the southern part of the rupture area. Here we present seismic reflection images of the southern part of the 2004 Sumatra–Andaman earthquake rupture area. We show that sedimentary strata, greater than 4?km in thickness, form coherent blocks that have been thrust onto the continental margin during subduction. The blocks form a 130-km-wide plateau overlying the seismogenic zone and the plate boundary megathrust lies near to the base of the sediments. The sediments consist of the Nicobar and Bengal Fan turbidites and exhibit strong internal cohesion. We suggest that dewatering and lithification of the sediments during burial made them unusually competent and strong, thus enabling rupture during the 2004 earthquake to propagate beneath the plateau, close to the Sunda Trench. Extending fault rupture so close to the trench, and thus further seaward, may have enhanced the tsunami hazard by displacing a greater thickness of water
    corecore